Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Sci ; 136(9)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37158682

RESUMO

COPII proteins assemble at ER exit sites (ERES) to form transport carriers. The initiation of COPII assembly in the yeast Saccharomyces cerevisiae is triggered by the ER membrane protein Sec12. Sec16, which plays a critical role in COPII organization, localizes to ERES independently of Sec12. However, the mechanism underlying Sec16 localization is poorly understood. Here, we show that a Sec12 homolog, Sed4, is concentrated at ERES and mediates ERES localization of Sec16. We found that the interaction between Sec16 and Sed4 ensures their correct localization to ERES. Loss of the interaction with Sec16 leads to redistribution of Sed4 from the ERES specifically to high-curvature ER areas, such as the tubules and edges of the sheets. The luminal domain of Sed4 mediates this distribution, which is required for Sed4, but not for Sec16, to be concentrated at ERES. We further show that the luminal domain and its O-mannosylation are involved in the self-interaction of Sed4. Our findings provide insight into how Sec16 and Sed4 function interdependently at ERES.


Assuntos
Retículo Endoplasmático , Proteínas de Saccharomyces cerevisiae , Glicosilação , Proteínas de Membrana , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética
2.
Mol Biol Cell ; 31(3): 149-156, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31851588

RESUMO

Coat protein complex II (COPII) protein assembles at the endoplasmic reticulum exit site (ERES) to form vesicle carrier for transport from the ER to the Golgi apparatus. Sec16 has a critical role in COPII assembly to form ERES. Sec16∆565N mutant, which lacks the N-terminal 565 amino acids, is defective in ERES formation and ER export. Several phosphoproteomic studies have identified 108 phosphorylated Ser/Thr/Tyr residues in Sec16 of Saccharomyces cerevisiae, of which 30 residues are located in the truncated part of Sec16∆565N. The exact role of the phosphorylation in Sec16 function remains to be determined. Therefore, we analyzed nonphosphorylatable Sec16 mutants, in which all identified phosphorylation sites are substituted with Ala. These mutants show ERES and ER export comparable to those of wild-type Sec16, although the nonphosphorylatable mutant binds the COPII subunit Sec23 more efficiently than the wild-type protein. Because nutrient starvation-induced autophagy depends on Sec16, Sec16∆565N impairs autophagy, whereas the nonphosphorylatable mutants do not affect autophagy. We conclude that Sec16 phosphorylation is not essential for its function.


Assuntos
Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Autofagia , Complexo de Golgi/metabolismo , Proteínas de Membrana/genética , Fosforilação , Ligação Proteica , Transporte Proteico , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular/metabolismo
3.
Cell Struct Funct ; 44(2): 105-112, 2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31406088

RESUMO

The coat protein complex II (COPII) generates transport carriers that deliver newly synthesized proteins from the endoplasmic reticulum (ER) to the Golgi apparatus. The small GTPase Sar1 is a well-known regulator of the assembly of the COPII coat. In the present study, we demonstrate that, besides its well-established role in ER-to-Golgi trafficking, the nuclear localization of Sar1 is essential for the viability of Saccharomyces cerevisiae. Inhibition of either the nuclear entry or retention of Sar1 leads to a severe growth defect. Additionally, in vivo deletion of Sar1, by using conditional genetic depletion, further demonstrates that the loss of nuclear localization of Sar1 results in an abnormal nuclear envelope shape. Our findings highlighted a possible novel role of Sar1 within the nucleus, which may relate to the proper formation of the nuclear envelope.Key words: Sar1, COPII, small GTPase, nuclear envelope, membrane traffic.


Assuntos
Núcleo Celular/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo
4.
J Cell Sci ; 130(17): 2893-2902, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28747320

RESUMO

The COPII coat and the small GTPase Sar1 mediate protein export from the endoplasmic reticulum (ER) via specialized domains known as the ER exit sites. The peripheral ER protein Sec16 has been proposed to organize ER exit sites. However, it remains unclear how these molecules drive COPII coat polymerization. Here, we characterized the spatiotemporal relationships between the Saccharomyces cerevisiae COPII components during their polymerization by performing fluorescence microscopy of an artificial planar membrane. We demonstrated that Sar1 dissociates from the membrane shortly after the COPII coat recruitment, and Sar1 is then no longer required for the COPII coat to bind to the membrane. Furthermore, we found that Sec16 is incorporated within the COPII-cargo clusters, and that this is dependent on the Sar1 GTPase cycle. These data show how Sar1 drives the polymerization of COPII coat and how Sec16 is spatially distributed during COPII coat polymerization.


Assuntos
Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Proteínas de Membrana/metabolismo , Microscopia , Polimerização , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Bicamadas Lipídicas/metabolismo , Modelos Biológicos
5.
Dev Cell ; 35(2): 211-21, 2015 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-26506309

RESUMO

The small GTPase Rab11 dynamically changes its location to regulate various cellular processes such as endocytic recycling, secretion, and cytokinesis. However, our knowledge of its upstream regulators is still limited. Here, we identify the RAB-11-interacting protein-1 (REI-1) as a unique family of guanine nucleotide exchange factors (GEFs) for RAB-11 in Caenorhabditis elegans. Although REI-1 and its human homolog SH3-binding protein 5 do not contain any known Rab-GEF domains, they exhibited strong GEF activity toward Rab11 in vitro. In C. elegans, REI-1 is expressed in the germline and co-localizes with RAB-11 on the late-Golgi membranes. The loss of REI-1 specifically impaired the targeting of RAB-11 to the late-Golgi compartment and the recycling endosomes in embryos and further reduced the RAB-11 distribution to the cleavage furrow, which resulted in cytokinesis delay. These results suggest that REI-1 is a GEF specifically regulating the RAB-11 localization and functions in early embryos.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Citocinese/genética , Desenvolvimento Embrionário/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Proteínas de Transporte Vesicular/genética , Animais , Caenorhabditis elegans/embriologia , Proteínas de Caenorhabditis elegans/biossíntese , Embrião não Mamífero , Endossomos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Interferência de RNA , Proteínas de Transporte Vesicular/biossíntese
6.
FEBS Lett ; 589(11): 1234-9, 2015 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-25896017

RESUMO

COPII vesicles are formed at specific subdomains of the ER, termed ER exit sites (ERESs). Depending on the cell type, ERESs number from a few to several hundred per cell. However, whether these ERESs are functionally and compositionally identical at the cellular level remains unclear. Our live cell-imaging analysis in Saccharomyces cerevisiae revealed that the isoforms of cargo-adaptor subunits are unequally distributed to each ERES at steady state, whereas this distribution is altered in response to UPR activation. These results suggest that in S. cerevisiae cargo loading to ERES is dynamically controlled in response to environmental changes.


Assuntos
Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/genética , Retículo Endoplasmático/genética , Proteínas de Membrana/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
7.
Front Plant Sci ; 5: 411, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25191334

RESUMO

Small GTPase proteins play essential roles in the regulation of vesicular trafficking systems in eukaryotic cells. Two types of small GTPases, secretion-associated Ras-related protein (Sar) and ADP-ribosylation factor (Arf), act in the biogenesis of transport vesicles. Sar/Arf GTPases function as molecular switches by cycling between active, GTP-bound and inactive, GDP-bound forms, catalyzed by guanine nucleotide exchange factors and GTPase-activating proteins, respectively. Activated Sar/Arf GTPases undergo a conformational change, exposing the N-terminal amphipathic α-helix for insertion into membranes. The process triggers the recruitment and assembly of coat proteins to the membranes, followed by coated vesicle formation and scission. In higher plants, Sar/Arf GTPases also play pivotal roles in maintaining the dynamic identity of organelles in the secretory pathway. Sar1 protein strictly controls anterograde transport from the endoplasmic reticulum (ER) through the recruitment of plant COPII coat components onto membranes. COPII vesicle transport is responsible for the organization of highly conserved polygonal ER networks. In contrast, Arf proteins contribute to the regulation of multiple trafficking routes, including transport through the Golgi complex and endocytic transport. These transport systems have diversified in the plant kingdom independently and exhibit several plant-specific features with respect to Golgi organization, endocytic cycling, cell polarity and cytokinesis. The functional diversification of vesicular trafficking systems ensures the multicellular development of higher plants. This review focuses on the current knowledge of Sar/Arf GTPases, highlighting the molecular details of GTPase regulation in vesicle formation in yeast and advances in knowledge of the characteristics of vesicle trafficking in plants.

8.
J Biol Chem ; 289(31): 21423-32, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24947508

RESUMO

The coat protein complex II (COPII) generates transport carriers from the endoplasmic reticulum (ER) under the control of the small GTPase Sar1. Sec23 is well known as a structural component of the COPII coat and as a GTPase-activating protein (GAP) for Sar1. Here, we showed that Saccharomyces cerevisiae contains a novel Sec23 paralog, Nel1, which appears not to function as a subunit of the COPII coat. Nel1 does not associate with any of the COPII components, but it exhibits strong Sar1 GAP activity. We also demonstrated that the chromosomal deletion of NEL1 leads to a significant growth defect in the temperature-sensitive sar1D32G background, suggesting a possible functional link between these proteins. In contrast to Sec23, which is predominantly localized at ER exit sites on the ER membrane, a major proportion of Nel1 is localized throughout the cytosol. Our findings highlight a possible role of Nel1 as a novel GAP for Sar1.


Assuntos
Vesículas Revestidas pelo Complexo de Proteína do Envoltório , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Sequência de Aminoácidos , Cromossomos Fúngicos , Proteínas Ativadoras de GTPase/química , Dados de Sequência Molecular , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Frações Subcelulares/metabolismo
9.
Mol Biol Cell ; 24(5): 633-42, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23303252

RESUMO

Proteins that fail to fold in the endoplasmic reticulum (ER) are subjected to ER-associated degradation (ERAD). Certain transmembrane ERAD substrates are segregated into specialized ER subdomains, termed ER-associated compartments (ERACs), before targeting to ubiquitin-proteasome degradation. The traffic-independent function of several proteins involved in COPII-mediated ER-to-Golgi transport have been implicated in the segregation of exogenously expressed human cystic fibrosis transmembrane conductance regulator (CFTR) into ERACs in Saccharomyces cerevisiae. Here we focus on the properties of COPII components in the sequestration of enhanced green fluorescent protein (EGFP)-CFTR into ERACs. It has been demonstrated that the temperature-sensitive growth defects in many COPII mutants can be suppressed by overexpressing other genes involved in COPII vesicle formation. However, we show that these suppression abilities are not always correlated with the ability to rescue the ERAC formation defect, suggesting that COPII-mediated EGFP-CFTR entry into ERACs is independent of its ER-to-Golgi trafficking function. In addition to COPII machinery, we find that ER-associated Hsp40s are also involved in the sequestration process by directly interacting with EGFP-CFTR. COPII components and ER-associated Hsp40, Hlj1p, act in the same pathway to sequester EGFP-CFTR into ERACs. Our findings point to an as-yet-undefined role of COPII proteins in the formation of ERACs.


Assuntos
Vesículas Revestidas pelo Complexo de Proteína do Envoltório , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/ultraestrutura , Proteínas de Fluorescência Verde , Humanos , Proteínas de Membrana/metabolismo , Mutação , Complexo de Endopeptidases do Proteassoma/metabolismo , Dobramento de Proteína , Transporte Proteico/genética , Proteólise , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo
10.
PLoS One ; 7(7): e40765, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22792405

RESUMO

Although it is well established that the coat protein complex II (COPII) mediates the transport of proteins and lipids from the endoplasmic reticulum (ER) to the Golgi apparatus, the regulation of the vesicular transport event and the mechanisms that act to counterbalance the vesicle flow between the ER and Golgi are poorly understood. In this study, we present data indicating that the penta-EF-hand Ca(2+)-binding protein Pef1p directly interacts with the COPII coat subunit Sec31p and regulates COPII assembly in Saccharomyces cerevisiae. ALG-2, a mammalian homolog of Pef1p, has been shown to interact with Sec31A in a Ca(2+)-dependent manner and to have a role in stabilizing the association of the Sec13/31 complex with the membrane. However, Pef1p displayed reversed Ca(2+) dependence for Sec13/31p association; only the Ca(2+)-free form of Pef1p bound to the Sec13/31p complex. In addition, the influence on COPII coat assembly also appeared to be reversed; Pef1p binding acted as a kinetic inhibitor to delay Sec13/31p recruitment. Our results provide further evidence for a linkage between Ca(2+)-dependent signaling and ER-to-Golgi trafficking, but its mechanism of action in yeast seems to be different from the mechanism reported for its mammalian homolog ALG-2.


Assuntos
Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Transporte Biológico , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/genética , Membrana Celular/metabolismo , Expressão Gênica , Dados de Sequência Molecular , Complexos Multiproteicos/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Ligação Proteica , Transporte Proteico , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Proteínas de Transporte Vesicular/metabolismo
11.
Mol Biol Cell ; 23(15): 2930-42, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22675024

RESUMO

COPII-coated buds are formed at endoplasmic reticulum exit sites (ERES) to mediate ER-to-Golgi transport. Sec16 is an essential factor in ERES formation, as well as in COPII-mediated traffic in vivo. Sec16 interacts with multiple COPII proteins, although the functional significance of these interactions remains unknown. Here we present evidence that full-length Sec16 plays an important role in regulating Sar1 GTPase activity at the late steps of COPII vesicle formation. We show that Sec16 interacts with Sec23 and Sar1 through its C-terminal conserved region and hinders the ability of Sec31 to stimulate Sec23 GAP activity toward Sar1. We also find that purified Sec16 alone can self-assemble into homo-oligomeric complexes on a planar lipid membrane. These features ensure prolonged COPII coat association within a preformed Sec16 cluster, which may lead to the formation of ERES. Our results indicate a mechanistic relationship between COPII coat assembly and ERES formation.


Assuntos
Vesículas Revestidas pelo Complexo de Proteína do Envoltório , Retículo Endoplasmático , Proteínas de Membrana , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Transporte Biológico , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/ultraestrutura , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Proteínas Ativadoras de GTPase/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Membranas/metabolismo , Membranas/ultraestrutura , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Ligação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo
12.
Traffic ; 12(5): 591-9, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21291503

RESUMO

The coat protein complex II (COPII) generates transport vesicles that mediate protein export from the endoplasmic reticulum (ER). The first step of COPII vesicle formation involves conversion of Sar1p-GDP to Sar1p-GTP by guanine-nucleotide-exchange factor (GEF) Sec12p. In Saccharomyces cerevisiae, Sed4p is a structural homolog of Sec12p, but no GEF activity toward Sar1p has been found. Although the role of Sed4p in COPII vesicle formation is implied by the genetic interaction with SAR1, the molecular basis by which Sed4p contributes to this process is unclear. This study showed that the cytoplasmic domain of Sed4p preferentially binds the nucleotide-free form of Sar1p and that Sed4p binding stimulates both the intrinsic and Sec23p GTPase-activating protein (GAP)-accelerated GTPase activity of Sar1p. This stimulation of Sec23p GAP activity by Sed4p leads to accelerated dissociation of coat proteins from membranes. However, Sed4p binding to Sar1p occurs only when cargo is not associated with Sar1p. On the basis of these findings, Sed4p appears to accelerate the dissociation of the Sec23/24p coat from the membrane, but the effect is limited to Sar1p molecules that do not capture cargo protein. We speculate that this restricted coat disassembly may contribute to the concentration of specific cargo molecules into the COPII vesicles.


Assuntos
Guanosina Trifosfato/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Proteínas do Capsídeo , GTP Fosfo-Hidrolases/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas de Membrana/genética , Proteínas Monoméricas de Ligação ao GTP/genética , Ligação Proteica , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular/genética
13.
Autophagy ; 5(5): 616-24, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19223769

RESUMO

Autophagy is a highly conserved degradative process in eukaryotic cells. This process plays an integral role in cellular physiology, and the levels of autophagy must be precisely controlled to prevent cellular dysfunction. The rapamycin-sensitive Tor kinase complex 1 (TORC1) has a major role in regulating the induction of autophagy; however, the regulatory mechanisms are not fully understood. Here, we find that Tap42 and protein phosphatase type 2A (PP2A) are involved in the regulation of autophagy in yeast. Temperature-sensitive mutant alleles of TAP42 revealed that autophagy was induced without inactivation of TORC1. Absence of the Tap42-interacting protein Tip41 abolished autophagy induction in the tap42 mutants, whereas overexpression of Tip41 activated autophagy. Furthermore, inactivation of PP2A stimulated autophagy and overexpression of a catalytic subunit of PP2A blocked rapamycin-induced autophagy. Our data support a model in which autophagy is negatively regulated by the Tap42-PP2A pathway.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autofagia , Proteína Fosfatase 2/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Proteínas Relacionadas à Autofagia , Deleção de Genes , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Modelos Biológicos , Fagossomos/enzimologia , Proteínas Quinases/metabolismo
14.
Mol Biol Cell ; 18(10): 4180-9, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17699586

RESUMO

Autophagy is a highly conserved, degradative process in eukaryotic cells. The rapamycin-sensitive Tor kinase complex 1 (TORC1) has a major role in regulating induction of autophagy; however, the regulatory mechanisms are not fully understood. Here, we find that the protein kinase A (PKA) and Sch9 signaling pathways regulate autophagy cooperatively in yeast. Autophagy is induced in cells when PKA and Sch9 are simultaneously inactivated. Mutant alleles of these kinases bearing a mutation that confers sensitivity to the ATP-analogue inhibitor C3-1'-naphthyl-methyl PP1 revealed that autophagy was induced independently of effects on Tor kinase. The PKA-Sch9-mediated autophagy depends on the autophagy-related 1 kinase complex, which is also essential for TORC1-regulated autophagy, the transcription factors Msn2/4, and the Rim15 kinase. The present results suggest that autophagy is controlled by the signals from at least three partly separate nutrient-sensing pathways that include PKA, Sch9, and TORC1.


Assuntos
Autofagia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Ativação Enzimática , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais
15.
Trends Cell Biol ; 17(6): 279-85, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17481899

RESUMO

Autophagy is connected to a surprising range of cellular processes, including the stress response, developmental remodeling, organelle homeostasis and disease pathophysiology. The inducible, predominant form of autophagy, macroautophagy, involves dynamic membrane rearrangements, culminating in the formation of a double-membrane cytosolic vesicle, an autophagosome, which sequesters cytoplasm and organelles. The signal transduction mechanisms that regulate autophagy are poorly understood and have focused on extracellular nutrient sensing. Similarly, little is known about the contribution of the endomembrane organelles to autophagy-related processes. Recent studies have provided interesting links between these topics, revealing that the secretory pathway provides membrane for autophagosome formation, and that autophagy has an important role in organelle homeostasis.


Assuntos
Autofagia/fisiologia , Retículo Endoplasmático/metabolismo , Animais , Morte Celular , Homeostase , Humanos , Fagossomos/metabolismo , Transdução de Sinais/fisiologia
16.
Autophagy ; 3(2): 160-2, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17204854

RESUMO

Autophagy is a response to the stress of nutrient limitation in yeast, whereby cytosolic long-lived proteins and organelles are nonselectively degraded, and the resulting macromolecules are recycled to allow new protein synthesis that is essential for survival. We recently revealed that endoplasmic reticulum (ER) stress induces autophagy. When misfolded proteins accumulate in the ER the resulting stress activates the unfolded protein response (UPR) to induce the expression of chaperones and proteins involved in the recovery process. Under conditions of ER stress, the preautophagosomal structure is assembled, and transport of autophagosomes to the vacuole is stimulated in an Atg protein-dependent manner. Interestingly, Atg1 has high kinase activity during ER stress-induced autophagy similar to the situation in starvation-induced autophagy.


Assuntos
Autofagia , Retículo Endoplasmático/metabolismo , Autofagia/efeitos dos fármacos , Ditiotreitol/farmacologia , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/patologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Dobramento de Proteína , Precursores de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Tunicamicina/farmacologia , Leveduras/efeitos dos fármacos , Leveduras/metabolismo
17.
J Cell Biol ; 175(6): 925-35, 2006 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-17178909

RESUMO

Autophagy is a conserved degradative pathway that is induced in response to various stress and developmental conditions in eukaryotic cells. It allows the elimination of cytosolic proteins and organelles in the lysosome/vacuole. In the yeast Saccharomyces cerevisiae, the integral membrane protein Atg9 (autophagy-related protein 9) cycles between mitochondria and the preautophagosomal structure (PAS), the nucleating site for formation of the sequestering vesicle, suggesting a role in supplying membrane for vesicle formation and/or expansion during autophagy. To better understand the mechanisms involved in Atg9 cycling, we performed a yeast two-hybrid-based screen and identified a peripheral membrane protein, Atg11, that interacts with Atg9. We show that Atg11 governs Atg9 cycling through the PAS during specific autophagy. We also demonstrate that the integrity of the actin cytoskeleton is essential for correct targeting of Atg11 to the PAS. We propose that a pool of Atg11 mediates the anterograde transport of Atg9 to the PAS that is dependent on the actin cytoskeleton during yeast vegetative growth.


Assuntos
Autofagia , Proteínas de Membrana/metabolismo , Fagossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Actinas/metabolismo , Proteínas Relacionadas à Autofagia , Citoplasma/metabolismo , Citoesqueleto/metabolismo , Proteínas de Membrana/genética , Mitocôndrias/metabolismo , Transporte Proteico , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Vacúolos/metabolismo , Proteínas de Transporte Vesicular/genética
18.
J Biol Chem ; 281(40): 30299-304, 2006 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-16901900

RESUMO

Eukaryotic cells have evolved strategies to respond to stress conditions. For example, autophagy in yeast is primarily a response to the stress of nutrient limitation. Autophagy is a catabolic process for the degradation and recycling of cytosolic, long lived, or aggregated proteins and excess or defective organelles. In this study, we demonstrate a new pathway for the induction of autophagy. In the endoplasmic reticulum (ER), accumulation of misfolded proteins causes stress and activates the unfolded protein response to induce the expression of chaperones and proteins involved in the recovery process. ER stress stimulated the assembly of the pre-autophagosomal structure. In addition, autophagosome formation and transport to the vacuole were stimulated in an Atg protein-dependent manner. Finally, Atg1 kinase activity reflects both the nutritional status and autophagic state of the cell; starvation-induced autophagy results in increased Atg1 kinase activity. We found that Atg1 had high kinase activity during ER stress-induced autophagy. Together, these results indicate that ER stress can induce an autophagic response.


Assuntos
Autofagia/fisiologia , Retículo Endoplasmático/fisiologia , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/fisiologia , Autofagia/efeitos dos fármacos , Família da Proteína 8 Relacionada à Autofagia , Ditiotreitol/farmacologia , Retículo Endoplasmático/efeitos dos fármacos , Proteínas Associadas aos Microtúbulos/deficiência , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Fagossomos/efeitos dos fármacos , Fagossomos/fisiologia , Dobramento de Proteína , Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Tunicamicina/farmacologia
19.
Mol Biol Cell ; 16(7): 3438-53, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15901835

RESUMO

Autophagy is a catabolic process used by eukaryotic cells for the degradation and recycling of cytosolic proteins and excess or defective organelles. In yeast, autophagy is primarily a response to nutrient limitation, whereas in higher eukaryotes it also plays a role in developmental processes. Due to its essentially unlimited degradative capacity, it is critical that regulatory mechanisms are in place to modulate the timing and magnitude of the autophagic response. One set of proteins that seems to function in this regard includes a complex that contains the Atg1 kinase. Aside from Atg1, the proteins in this complex participate primarily in either nonspecific autophagy or specific types of autophagy, including the cytoplasm to vacuole targeting pathway, which operates under vegetative growth conditions, and peroxisome degradation. Accordingly, these proteins are prime candidates for factors that regulate the conversion between these pathways, including the change in size of the sequestering vesicle, the most obvious morphological difference. The atg17delta mutant forms a reduced number of small autophagosomes. As a result, it is defective in peroxisome degradation and is partially defective for autophagy. Atg17 interacts with both Atg1 and Atg13, via two coiled-coil domains, and these interactions facilitate its inclusion in the Atg1 complex.


Assuntos
Autofagia , Proteínas de Transporte/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Fosfatase Alcalina/metabolismo , Proteínas Relacionadas à Autofagia , Western Blotting , Proteínas de Transporte/química , Eletroforese em Gel de Poliacrilamida , Proteínas de Fluorescência Verde/metabolismo , Immunoblotting , Microscopia de Fluorescência , Modelos Biológicos , Mutação , Peroxissomos/metabolismo , Fagocitose , Fosfoproteínas/metabolismo , Plasmídeos/metabolismo , Ligação Proteica , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Tempo , Técnicas do Sistema de Duplo-Híbrido
20.
Mol Biol Cell ; 16(4): 1593-605, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15659643

RESUMO

Proteins are selectively packaged into vesicles at specific sites and then delivered correctly to the various organelles where they function, which is critical to the proper physiology of each organelle. The precursor form of the vacuolar hydrolase aminopeptidase I is a selective cargo molecule of the cytoplasm to vacuole targeting (Cvt) pathway and autophagy. Precursor Ape1 along with its receptor Atg19 forms the Cvt complex, which is transported to the pre-autophagosomal structure (PAS), the putative site of Cvt vesicle formation, in a process dependent on Atg11. Here, we show that this interaction occurs through the Atg11 C terminus; subsequent recruitment of the Cvt complex to the PAS depends on central regions within Atg11. Atg11 was shown to physically link several proteins, although the timing of these interactions and their importance are unknown. Our mapping shows that the Atg11 coiled-coil domains are involved in self-assembly and the interaction with other proteins, including two previously unidentified partners, Atg17 and Atg20. Atg11 mutants defective in the transport of the Cvt complex to the PAS affect the localization of other Atg components, supporting the idea that the cargo facilitates the organization of the PAS in selective autophagy. These findings suggest that Atg11 plays an integral role in connecting cargo molecules with components of the vesicle-forming machinery.


Assuntos
Citoplasma/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vesículas Transportadoras/metabolismo , Vacúolos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Aminopeptidases/metabolismo , Autofagia , Proteínas Relacionadas à Autofagia , Sítios de Ligação , Fagossomos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Técnicas do Sistema de Duplo-Híbrido , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...